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Supplementary Material

1. Overview
This document provides additional technical and experi-
mental details for DreamingComics, expanding upon the
content of the main paper. It is organized as follows:
• Section 2 provides inference details on our image

customization model, Dream-Illustrator, and com-
pares the inference time and memory against other
video-based methods [5, 20].

• Section 3 describes the dataset construction pipeline,
filtering criteria, and ethical considerations.

• Section 4 provides metric definitions and evaluation
protocols for ViStoryBench [44].

• Section 5 reports comprehensive ablation studies an-
alyzing the contributions of each module.

• Section 6 includes high-resolution qualitative com-
parisons, layout visualizations, and failure cases.

• Section 7 outlines the user study setup, questionnaire
design, and statistical analysis.

• Section 8 discusses remaining challenges and future
work directions.

2. Dream Illustrator
2.1. Inference Details
During inference, we preprocess the input subject image
by removing its background using RMBG 1.4 [3], so
that the image’s background does not affect the image
customization. We resize the image’s width and height
to be divisible by 16. If the subject image’s style is close
to photorealistic and depicts a realistic human, we crop
the facial region from the subject [37] and use it as the
subject image, enabling a wider range of possible poses
and clothing while remaining faithful to the facial iden-
tity. If the subject image is of an unrealistic style or
depicts a deformed character, we use the full subject im-
age with its background removed. When a layout box
is smaller than the reference latent resolution, the RoPE
index spacing is uniformly subsampled to prevent phase
aliasing, preserving smooth positional variation and en-
suring stable, artifact-free positional encodings across
varying layout sizes.

Attention Masking for Multi Subject. Motivated
by Eligen [40], we design an attention masking strategy
when multiple subject inputs are given. To prevent in-
formation leakage between two distinct subject latents ci

and cj , we craft an attention mask M that assigns an ex-
tremely negative value to cross-attention scores between
different latents, i.e.,

M(p, q) =

{
−∞ if (p, q) ∈ (ci × cj)

0 else

Note that, unlike prior methods [7, 40], we do not
assign “hard” regional attention maps according to the
layout condition, as we found that they may harm the
visual consistency of our pipeline. We illustrate this fur-
ther in our ablation section (Section 5).

Method Inference Time (seconds) Memory Used (GB)

RealGeneral [20] 92.58 25.91
DRA-Ctrl [5] 58.46 46.34
Ours (Size : 256× 256) 12.85 43.13
Ours (Size : 1, 280× 720) 17.05 43.99

Table 1. Average inference time per image on a single H100
GPU. All inferences were based on the official code.

2.2. Inference Time and Memory Cost
We provide the inference-time comparison for our
method with other video-based methods [5, 20] at Ta-
ble 1. Here, we measure the computation time to gen-
erate an image of 1280 × 720, for a single given sub-
ject. Since RealGeneral [20] and DRA-Ctrl [5] require
the subject size to be equal to the target size, we re-
size the subject size to 1280 × 720 for these methods,
while we test for different subject sizes: (256 × 256)
and (1280× 720). All computations were performed on
a single H100 GPU. As shown in Table 1, our method
can significantly outperform other methods in runtime;
we outperform DRA-Ctrl by more than 3 times and Re-
alGeneral by more than 5 times. We owe this to the use
of FramePack [41], which allows for the generation of a
single output image while fully utilizing the video model
priors.

3. Dataset Construction and Ethics
3.1. Comics Layout Dataset
We list the different comic datasets that were used for
fine-tuning our Qwen-based [35] layout generator in Ta-
ble 2. After annotating the panel and character bounding
boxes, either using the officially annotated boxes or the



Figure 1. (top-left) Instruction Prompt used for obtaining panel-wise captions for each comic dataset. (bottom-left) Prompt used
for fine-tuning Qwen [35] to output the corresponding layout to a set of captions. (right) An example from our processed comic
dataset, with a spatial layout for a single comic page (left) and its corresponding caption (right).

Magiv2 panel detector [28], we select and clean a subset
of comic pages that constitutes a stable distribution for
training. Specifically, we only include pages that consist
of more than 2 panels and fewer than 8 panels. For each
panel-wise character bounding box, if the relative size of
the box to the panel is less than 5% or larger than 90%,
we remove that character box from the list. If the size
is less than 20% or larger than 75%, we resize the box
to an appropriate size within 20% to 75%. We also re-
move boxes that overlap by more than 25% with another
bounding box. This minimizes the risk of erroneous de-
tection results from the panel detector.

Once the panels and bounding boxes are processed,
we use Qwen-2.5-VL-7B [35] to process the panel-wise
captions. We first use panel-wise images, along with
an instruction prompt, as input to generate story cap-
tions for each panel. We then pair these captions with
the cleaned layouts to form a question-answer pair for
supervised fine-tuning. Prior to tuning, we also run a
prompt that, for each panel caption, identifies the num-
ber of valid characters within the panel and filters out the
layouts with mismatching character numbers to ensure
consistency. For training and inference, we attach the
number of characters (e.g., 2 characters) in front of the
input caption to encourage the model to produce layouts
with the correct number of character bounding boxes.
In total, we process 35,702 layouts and use 35K layout-
caption pairs for training and 702 pairs for testing.

3.2. Paired Subjects Dataset

We list the different datasets and preprocessing pro-
cedures for fine-tuning FramePack[41] for next frame
prediction. The OpenS2V-Nexus [39] dataset consists
of 13 subject-text-video triplet sets. Each set includes
aesthetic [30] and motion scores [2] for the video,

frame-wise facial bounding boxes detected by an image-
prompt detection model [11], a multi-modal retrieval
model [42], segmentation masks from GroundingDINO
[19], and captions generated using Qwen-2.5 [35]. For
a given set, we first select videos that are in the top 25%
for both aesthetic and motion scores. To further filter
videos with at least one visible, consistent human en-
tity, we identify video bounding boxes that occupy more
than 1% of the total frame and do not overlap with other
boxes. This filtering selects videos with clear, unob-
scured identities and an appropriate amount of motion
so that the human does not appear static throughout the
video but does not show dynamic actions that distort
identity. The layout of the first frame is then acquired us-
ing the provided segmentation mask, and a source frame
is selected from the video frames that are at least 1 sec-
ond apart from the first frame, forming a source-target
frame pair. Finally, we measure the TopIQ scores [8] for
the target and source frames and only select the pair if
both scores are above 0.3.

For the Anime-Shooter [25] dataset, we were able to
download 2,915 videos from YouTube that were listed
in the dataset metadata. Using the character-level seg-
mentation masks included in the metadata, which were
extracted using Sa2VA [38], we extract the source refer-
ence images and target latent masks for randomly se-
lected frame pairs in a manner similar to OpenS2V-
Nexus. We then measure the TopIQ scores to filter the
frame pairs. For the Subject200K dataset [32], we use
the text metadata to get the subject information, fol-
lowed by LISA [18] to predict the mask of the sub-
ject with the name in the target image, which is con-
verted into a single-subject layout. In total, we pro-
cessed 56,691 pairs of single-subject and layout paired
data, and we used 55K pairs for training. We processed



Method Selected
Pages

Annotated
Pages

Annotated
Panels

Annotated
Characters

COMICS [16] 22,864 197,466 1,075,393 2,981,509
Manga109 [14] 11,118 16,051 83,748 131,759
PopManga [27] 1,720 1,925 9,578 18,778

Table 2. List of datasets used for training our layout generator.

21,027 pairs of multi-subject and layout paired data, and
we used 20K pairs for training.

3.3. Copyright Details and Ethical Considera-
tions

Both OpenS2V-Nexus [39] and Anime-Shooter [25]
publicly released their datasets under terms that limit
their use to academic research. OpenS2V-Nexus was
released under the CC-BY-4.0 License, hosting all of
its data exclusively for registered users. Anime-Shooter
was released under the CC-BY-NC 4.0 License, provid-
ing the annotated scripts, metadata, and YouTube links
instead of the actual videos. Subjects200K [32] is a syn-
thetic dataset built using FLUX [1] and was released un-
der the Apache License.

The COMICS [16] dataset consists of American
comics published between 1938 and 1954, gathered
from the Digital Comics Museum, which hosts user-
uploaded scans of copyright-expired, public domain
comics. The Manga109 [14] consists of Japanese comic
books (Manga) for which permission was granted by the
authors of each of the works under the condition that
it will be used solely for academic purposes. PopManga
[27] consists of English-translated Japanese Manga, col-
lected from various data sources [4, 22], and is not as-
sumed to be used for commercial purposes.

We have strictly used these resources in accordance
with their intended usage and have not employed them
for any commercial applications.

4. Quantitative Evaluation Details
4.1. ViStoryBench Details
ViStoryBench is a relatively novel benchmark for story
visualization, a field that has lacked a comprehensive,
story-centric evaluation benchmark. To account for vari-
ous story types and artistic styles, ViStoryBench curated
80 story segments with 344 characters to balance narra-
tive structures and visual elements. Each story conveys
diverse characteristics, including different plots (such as
comedy and horror) and visual aesthetics (such as anime
and 3D renderings).

4.2. ViStoryBench Metrics Definition
In order to establish a comprehensive story visualization
benchmark, ViStoryBench [44] has also quantified sev-
eral attributes important for story visualization and so-

lidified those attributes as evaluation metrics. Here, we
try to follow the implementations provided in ViStory-
Bench’s official repository as closely as possible.

Character Identification Similarity (CIDS). The
CIDS score assesses the resemblance between the gen-
erated characters and the reference characters (cross), as
well as the consistency within the generated characters
themselves (self). We first use Grounding DINO [21], an
open-set object detector, to crop specific characters from
the reference image and the generated images based on
the character description prompts. If GroundingDINO
fails to return the detected region for a character, the
score becomes zero. We then extract the character fea-
tures from the cropped image; depending on the story
type, if the character is realistic, we use an ensemble of
ArcFace [12], AdaFace [17], and FaceNet [6] for feature
extraction; otherwise, we use CLIP [26]. After feature
extraction, we compute the cosine similarity between the
512-dimensional feature vectors to obtain the character
similarity score. Finally, we average the results by story
and return the final averaged results for cross-similarity
and self-similarity.

Style Similarity (CSD). The CSD score assesses
the stylistic consistency between the generated images
and the reference images (cross) and the consistency
within the generated images themselves (self). We use
the CSD-CLIP [31] feature analysis, which employs a
CLIP [26] vision encoder pre-trained on a large-scale
style dataset and returns the style features disentangled
from the content features. We then compute the cosine
similarity between the feature vectors for both cross-
similarity and self-similarity.

Onstage Character Count Matching (OCCM).
The OCCM score checks whether the generative
pipeline generates the correct set of intended onstage
characters, without any superfluous characters (unex-
pected additions) or omissive characters (failure to ren-
der specific roles). Based on the detected characters
from the CIDS stage, the OCCM score is calculated as:

OCCM = 100× exp
(
−|D − E|

ϵ+ E

)
(1)

where D denotes the detected number of characters, E
represents the expected character count from storyboard
specifications, and ϵ = e−6 is the smoothing factor to
prevent division by zero. Because the code for OCCM
was not explicitly defined within the code repository
while being written in the paper, we implemented our
scoring code that follows the official description.

Layout Precision. To correctly measure our
method’s subject-wise layout fidelity to other layout-
controlled methods, we introduce a Layout Precision
metric that quantifies the spatial containment of pre-
dicted bounding boxes in relation to the input bounding



boxes. This metric focuses on whether predictions re-
main within valid ground-truth regions, rewarding pre-
dictions that lie entirely inside the layout boxes while
penalizing only those that extend beyond them, match-
ing our method’s intuition of giving ’soft’ bounding
boxes as inputs rather than ’hard’ boundaries. Based on
the detected characters, we select character boxes that
have a confidence score of over 0.5. For each predicted
box, we compute the ratio between the intersection area
with its best-matching ground-truth box and the total
area of the predicted box, emphasizing the spatial pre-
cision of the character-wise box. We then calculate this
score for all available characters and average it.

Copy Paste Detection. The Copy-Paste detection
score identifies whether the generative pipeline has di-
rectly ”copy-pasted” the character reference image for
generation, which is undesired for story visualization.
Specifically, for methods limited to single-image input,
and for stories that provide multiple reference images for
a single character, the metric computes the disparity in
similarity between the output characters and both the in-
put image and an alternative reference image. A higher
value will indicate a greater propensity for the model
to replicate characters directly from reference images.
Since our method and other image customization meth-
ods like UNO [34] and DreamO [23] support multiple
image inputs for a single subject, we do not explicitly
show this in our paper.

Image Quality Metrics. We calculate the aesthetic
quality score [13] for all generated results and average
them. We also calculate the Inception score [29] for all
generated results.

4.3. Adapting Methods to ViStoryBench
We list the specifics of adapting each method to the ViS-
toryBench evaluation. When possible, we used the infer-
ence codes for each method provided in the official ViS-
toryBench repository. We also list the following spec-
ifications for each method. Methods not listed below
followed the same procedure as detailed in the official
repository.

Copy-Paste Baseline. ViStoryBench provided the
scores for the Copy-Paste Baseline, which involves di-
rectly copying and pasting characters into images. We
include these scores in our quantitative comparison to
assess how closely other methods represent the aesthet-
ics of the overall characters and stories.

Story Adapter. We report the results for the setting
image-ref, scale 5, which was the main result used for
reporting in ViStoryBench. [44]

DiffSensei. We followed the original implementation
and weights of DiffSensei [33] and used the same layout
conditions generated from our layout generator. Due to
the inference memory issue, we used the inference demo

Name CIDS
(Cross/Self)

CSD
(Cross/Self)

(λMASK = 0.0) 56.6 / 61.2 50.5 / 56.3
(λMASK = 0.1) 53.8 / 56.7 48.9 / 56.1
(λMASK = 0.25) 54.5 / 59.0 49.4 / 56.3
Ours (λMASK = 0.05) 58.4 / 63.0 52.9 / 62.4

Table 3. Ablation study on the impact of choosing the right
timestamp for the target image.

Name CIDS
(Cross/Self)

CSD
(Cross/Self)

with Regional Attention 49.2 / 55.8 44.7 / 55.0
Ours 58.4 / 63.0 52.9 / 62.4

Table 4. Ablation study on the impact of choosing the right
timestamp for the target image.

that does not utilize the MLLM model [15], which is
claimed to ’largely unaffected the overall quality’.

Eligen. Since Eligen [40] does not support input
reference images, we used the prompt of each shot of
ViStoryBench dataset and the same layout conditions to
generate images.

DreamO. We follow ViStoryBench’s official imple-
mentation of inferencing UNO [34] and adapt its struc-
ture to DreamO [23].

RealGeneral. We followed the subject-driven gener-
ation pipeline provided by the original implementation,
with an aspect ratio fixed to 16:9; i.e., 1344×768. Since
RealGeneral only accepts a single reference image with
the same size as the target, we select the first reference
image for each shot and resize it to 1344 × 768 before
passing it to RealGeneral.

DRA-Ctrl. We followed the subject-driven genera-
tion pipeline provided by the original implementation,
following the size limit of 512 × 512 imposed by the
official code for each ViStoryBench story.

5. Ablation Studies
5.1. Masked Condition Loss Strength
To evaluate the influence of the masked condition loss,
we vary λMASK ∈ {0.0, 0.05, 0.1, 0.25} under the same
training setup used in our main ablation study and report
CIDS and CSD scores on ViStoryBench. As shown in
Table 3, removing the loss entirely (λMASK = 0) leads
to degradation in both identity and style consistency, re-
flecting uncontrolled attention spillover across subjects.
Increasing λMASK beyond a small value does not im-
prove performance: both 0.10 and 0.25 reduce CIDS and
CSD, suggesting that stronger penalties hinder global
context integration. Our chosen setting, (λMASK =
0.05), achieves the best overall results, indicating that



a light spatial constraint is sufficient to stabilize multi-
subject disentanglement without sacrificing stylistic co-
herence.

5.2. Regional Attention Mask
For better comparison, we also experiment with a re-
gional attention mask adapted from previous literature
[7, 40] to determine whether its presence positively af-
fects quality. As shown in Table 4, results with the re-
gional attention mask lead to worse overall identity and
style preservation compared to our constraint formula-
tion. Overall, combining RegionalRoPE with our soft
training loss yields the best results, validating our de-
sign choice of using learnable layout constraints rather
than rigid attention control, leading to more accurate and
flexible subject placement.

6. Additional Qualitative Results
6.1. Image Customization Results
From Fig. 2 to 5, we present the results from our image
customization pipeline, Dream-Illustrator, alongside the
results from other competing methods [20, 23, 33, 34,
40, 43] based on the same character images and layouts.
Previous layout-guided methods [33, 40] can accurately
position characters within a given layout, but they fail to
support reference identity and artistic style. Other meth-
ods also tend to be biased towards photorealistic styles,
neglecting the diverse art styles unique to the reference
image. On the contrary, our methods can support diverse
types of images and story types, such as children’s pic-
ture book illustrations (Fig. 2, Fig. 5), Minecraft-style
animations (Fig. 4), and realistic sewing-doll puppetry
(Fig. 3).

From Fig. 6 to 9, we present comic-level story visu-
alization results from our full pipeline, where we first
generate layouts from the input panel-wise captions and
use them, along with the reference images and captions,
to synthesize a full-length comic-style story. The re-
sults capture diverse types of art styles, from cel-style
animation to photorealistic dramas, and correctly po-
sition the given reference images within the layout re-
gions while adhering to the panel-wise caption context.
In Fig. 10, we present a story-level comparison between
our pipeline and other competing methods. We show
that our pipeline can consistently create images for the
given characters without omitting or adding any charac-
ters not specified by the input instructions.

6.2. Layout Generation Visualization
Fig. 11 to 14 visualizes the results from our layout gen-
erator pipeline, which, given a multi-panel caption (Ti),
produces structured panel (Di) and character bounding
boxes (BOXi). Fig. 11 and 13 show the diverse layouts

generated from the same caption set, demonstrating the
flexibility of our layout generator for story visualization
while remaining faithful to the given prompt. Fig 12
and 14 also show the different layouts generated by sto-
ries from ViStoryBench [44].

Fig. 15 shows the ability of Dream-Illustrator to con-
trol the character position according to the given lay-
out, without losing character identity and artistic style.
Fig. 16 demonstrates how robust our method can be to
different shapes of layouts, preserving the aspect ratio of
the reference image’s aesthetics without any distortions.

7. User Study Details
From Fig. 18 to Fig. 21, we present the screenshots for
each question type in the user study.

We conducted a user study with 26 participants and
a total of 20 questions to evaluate our story visualiza-
tion pipeline in terms of image customization and lay-
out generation. The first 15 questions compared our im-
age customization method with two other state-of-the-
art methods, UNO [34] and DreamO [23], in terms of
visual consistency. The last 5 questions compared our
layout generation method with GPT-4 [24], in terms of
creating plausible layouts.

Specifically, the first 5 questions evaluate how closely
the methods preserve the identity of the input image.
Each participant assessed the input reference image
along with images generated by both baseline methods
and our approach. The evaluation question was
• The two images below were made based on the orig-

inal image shown above. Which one looks more like
the same character from the original image?
The next 5 questions evaluate how closely the meth-

ods preserve the style of the input image. Based on a
similar format to character identity, the evaluation ques-
tion was
• The two images below were made based on the origi-

nal image shown above. Which one better keeps the
artistic style or feeling of the original image?
The next 5 questions evaluate how closely the meth-

ods maintain visual consistency throughout story visual-
ization. Instead of showing the reference image, a series
of 4 images for a single story, generated by both baseline
methods and our approach using the same reference im-
age, was displayed to each participant. The evaluation
question was
• Each set below shows four images created by the same

method. Which set of images keeps a more consis-
tent art style across all four pictures?
The last 5 questions evaluate the plausibility of our

layout generator method in creating layouts that consist
of the correct number of panels and characters, while
remaining faithful to the customs of traditional comics.



Each participant assessed the input panel-wise captions
along with the visualized layouts generated by both
GPT-4 [24] and our approach using the same captions.
The evaluation question was
• The two images below show different comic page lay-

outs created from the same script. Which layout looks
more natural and accurate for the story—for exam-
ple, with the right number of panels and characters,
and a clear, well-arranged page?

8. Limitations and Future Work
Although DreamingComics demonstrates strong layout-
aware customization, its performance may degrade
when the layout input is poorly specified. Despite using
positional guidance rather than enforcing strict masking
constraints [40], errors such as missing or misaligned
bounding boxes—e.g., in multi-subject scenes—can still
result in incomplete or incoherent outputs. Faulty con-
figurations, such as overlapping or irregular character re-
gions, may further reduce visual fidelity (see Fig. 17).
Although our code applies rule-based corrections (e.g.,
ignoring bounding boxes below a certain size), unreli-
able layouts can occasionally require users to provide
more carefully crafted inputs, which can be a tedious
task and negatively impact the user experience.

Badly structured layouts can also impact the model’s
prompt adherence. Since our method jointly conditions
on text, image, and layout—unlike most prior works
that consider only text and image—conflicts between
the textual prompt and the layout may lead to outputs
that do not reflect the intended narrative. These failure
cases are further influenced by the fact that our model
is fine-tuned from a pretrained video generator using a
relatively compact, video-derived dataset with limited
stylistic diversity and layout variability.

Looking forward, we believe that future work can
address these issues by scaling both the model and the
training data. Enhancing the layout generator with relia-
bility checks or feedback-guided refinement could miti-
gate downstream spatial artifacts. Also, using larger and
more diverse datasets annotated with layout and sub-
ject signals, paired with advanced video diffusion back-
bones, could unlock greater stylistic coverage and layout
generalization. With the advent of advanced generative
models that can precisely render text [9, 10, 36], we can
also add layouts for text boxes, onomatopoeia, and other
visual effects that can positively benefit comic creation.
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Figure 2. Image-level comparison of our model, which is capable of preserving the character identity and style while controlling
locations by layout. Other methods tend to misinterpret the reference character’s identity and style.

Figure 3. Image-level comparison of our model, which is capable of preserving the character identity and style while controlling
locations by layout. Other methods tend to misinterpret the reference character’s identity and style.



Figure 4. Image-level comparison of our model, which is capable of preserving the character identity and style while controlling
locations by layout. Other methods tend to misinterpret the reference character’s identity and style.

Figure 5. Image-level comparison of our model, which is capable of preserving the character identity and style while controlling
locations by layout. Other methods tend to misinterpret the reference character’s identity and style.



Figure 6. Example story visualization for a 5-panel comic, featuring 2 characters depicted in a realistic style.

Figure 7. Example story visualization for a 5-panel comic, featuring 3 characters depicted in a traditional animation style.



Figure 8. Example story visualization for a 5-panel comic, featuring 3 characters depicted in a Japanese cel animation style.

Figure 9. Example story visualization for a 4-panel comic, featuring 3 characters, one with multiple reference images, depicted in
a black-and-white photo style.



Figure 10. Qualitative comparison on ViStoryBench. Reference images of each shot’s on-stage characters are shown in Copy-Paste
baseline results. Compared to other methods, our method demonstrates visually consistent results in both character and style, while
adhering to the given captions without omitting or creating superfluous characters.



Figure 11. From a multi-panel caption (left), the right three columns show diverse panel (D1:n) and character (BOX1:n) arrange-
ments from our layout generator, illustrating its ability to generate multiple coherent layouts for story visualization.

Figure 12. Additional panel / character layouts generated from ViStoryBench [44] stories. Given the same story but with different
numbers of preceding panels, our layout generator maintains stable character positions while adapting flexibly to new contexts,
indicating strong consistency along with controlled diversity.



Figure 13. From a multi-panel caption (left), the right three columns show diverse panel (D1:n) and character (BOX1:n) arrange-
ments from our layout generator, illustrating its ability to generate multiple coherent layouts for story visualization.

Figure 14. Additional panel / character layouts generated from ViStoryBench [44] stories. Given the same story but with different
numbers of preceding panels, our layout generator maintains stable character positions while adapting flexibly to new context,
indicating strong consistency along with controlled diversity.



Figure 15. Qualitative results on Dream-Illustrator’s ability to control the output by the given layout condition.

Figure 16. Qualitative results on Dream-Illustrator’s ability to be robust to layouts that ill-defines the ratio of the actual subject.

Figure 17. Limitations Our model fails to support such narrow, impractical layout conditions that are not within the trained
distribution, which results in instances where the visual consistency is broken.



Figure 18. User study interface and question, regarding character identity.

Figure 19. User study interface and question, regarding character style.



Figure 20. User study interface and question, regarding story consistency.

Figure 21. User study interface and question, regarding layout plausibility.
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